Skip to main content
Log in

Heat-stressed Metarhizium anisopliae: viability (in vitro) and virulence (in vivo) assessments against the tick Rhipicephalus sanguineus

  • Original Paper
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

The current study investigated the thermotolerance of Metarhizium anisopliae s.l. conidia from the commercial products Metarril® SP Organic and Metarril® WP. The efficacy of these M. anisopliae formulations against the tick Rhipicephalus sanguineus s.l. was studied in laboratory under optimum or heat-stress conditions. The products were prepared in water [Tween® 80, 0.01 % (v/v)] or pure mineral oil. Conidia from Metarril® SP Organic suspended in water presented markedly delayed germination after heating to constant 40 °C (for 2, 4, or 6 h) compared to conidia suspended in mineral oil. Metarril® SP Organic suspended in oil and exposed to daily cycles of heat-stress (40 °C for 4 h and 25 °C for 19 h for 5 consecutive days) presented relative germination of conidia ranging from 92.8 to 87.2 % from day 1 to day 5, respectively. Conversely, germination of conidia prepared in water ranged from 79.3 to 39.1 % from day 1 to day 5, respectively. Culturability of Metarril® WP decreased from 96 % when conidia were cultured for 30 min prior to heat exposure (40 °C for 4 h) to 9 % when conidia were cultured for 8 h. Tick percent control was distinctly higher when engorged females were treated with oil suspensions rather than water suspensions, even when treated ticks were exposed to heat-stress regimen. Oil-based applications protected fungal conidia against heat-stress. Although Metarril® is not registered for tick control, it may be useful for controlling R. sanguineus, especially if it is prepared in mineral oil.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Alves RT, Bateman RP, Prior C, Leather SR (1998) Effects of simulated solar radiation on conidial germination of Metarhizium anisopliae in different formulations. Crop Protect 17:675–679. doi:10.1016/S0261-2194(98)00074-X

  • Angelo IC, Fernandes EKK, Bahiense TC, Perinotto WM, Moraes AP, Terra AL, Bittencourt VR (2010) Efficiency of Lecanicillium lecanii to control the tick Rhipicephalus microplus. Vet Parasitol 172:317–322. doi:10.1016/j.vetpar.2010.04.038

  • Arruda W, Lubeck I, Schrank A, Vainstein MH (2005) Morphological alterations of Metarhizium anisopliae during penetration of Boophilus microplus ticks. Exp Appl Acarol 37:231–244. doi:10.1007/s10493-005-3818-6

    Article  PubMed  Google Scholar 

  • Bahiense TC, Fernandes EKK, Bittencourt VR (2006) Compatibility of the fungus Metarhizium anisopliae and deltamethrin to control a resistant strain of Boophilus microplus tick. Vet Parasitol 141:319–324. doi:10.1016/j.vetpar.2006.05.011

  • Barreto LP, Luz C, Mascarin GM, Roberts DW, Arruda W, Fernandes EKK (2016) Effect of heat stress and oil formulation on conidial germination of Metarhizium anisopliae s.s. on tick cuticle and artificial medium. J Invertebr Pathol 138:94–103. doi:10.1016/j.jip.2016.06.007

  • Bateman RP, Carey M, Moore D, Prior C (1993) The enhanced infectivity of Metarhizium flavoviride in oil formulations to desert locusts at low humidities. Ann of Appl Biol 122:145–152. doi:10.1111/j.1744-7348.1993.tb04022.x

    Article  Google Scholar 

  • Bellato V, Daemon E (1997) Influência da temperatura de manutenção da fase não parasitária sobre a fase parasitária de Rhipicephalus sanguineus (Latreille, 1806) (Acari: Ixodidae). Rev Bras Parasitologia Vet 6:15–19

    Google Scholar 

  • Bennett GF (1974) Oviposition of Boophilus microplus (Canestrini) (Acarida: Ixodidae). I. Influence of tick size on egg production. Acarologia 16:52–61

    CAS  PubMed  Google Scholar 

  • Bittencourt V, Mascarenhas AG, Faccini JLH (1999) Mecanismo de infecção do fungo Metarhizium anisopliae no carrapato Boophilus microplus em condições experimentais. Ciênc Rural 29:351–354

    Article  Google Scholar 

  • Borges LMF, Soares SF, Fonseca IN, Chaves VV, Louly CCB (2007) Resistência acaricida em larvas de Rhipicephalus sanguineus (Acari: Ixodidae) de Goiânia-GO, Brasil. Rev Patol Trop 36:87–95

  • Braga GU, Flint SD, Messias CL, Anderson AJ, Roberts DW (2001a) Effects of UVB irradiance on conidia and germinants of the entomopathogenic hyphomycete Metarhizium anisopliae: a study of reciprocity and recovery. Photochem Photobiol 73:140–146

    Article  CAS  PubMed  Google Scholar 

  • Braga GU, Flint SD, Miller CD, Anderson AJ, Roberts DW (2001b) Variability in response to UV-B among species and strains of Metarhizium isolated from sites at latitudes from 61° N to 54° S. J Invertebr Pathol 78:98–108. doi:10.1006/jipa.2001.5048

    Article  CAS  PubMed  Google Scholar 

  • Braga GU, Rangel DE, Flint SD, Miller CD, Anderson AJ, Roberts DW (2002) Damage and recovery from UV-B exposure in conidia of the entomopathogens Verticillium lecanii and Aphanocladium album. Mycologia 94:912–920

    Article  PubMed  Google Scholar 

  • Brovini C, Furlong J, Chagas AS (2003) Influence of climatical factors in the biology and behavior of Boophilus microplus engorged females in the filed. Biosci J 19:71–76

    Google Scholar 

  • Camargo MG, Golo PS, Angelo IC, Perinotto WM, Sa FA, Quinelato S, Bittencourt VR (2012) Effect of oil-based formulations of acaripathogenic fungi to control Rhipicephalus microplus ticks under laboratory conditions. Vet Parasitol 188:140–147. doi:10.1016/j.vetpar.2012.03.012

    Article  PubMed  Google Scholar 

  • Camargo MG et al (2014) Commercial formulation of Metarhizium anisopliae for the control of Rhipicephalus microplus in a pen study. Vet Parasitol 205:271–276. doi:10.1016/j.vetpar.2014.07.011

    Article  PubMed  Google Scholar 

  • Chagas ACS, Furlong J, Nascimento CB (2001) Behaviour and ecology of engorged females of the tick, Boophilus microplus, in pastures of the grass, Brachiaria decumbens in Brazil. Braz J Vet Res Anim Sci 38:188–191

  • Chandler D, Davidson G, Pell J, Ball B, Shaw K, Sunderland K (2000) Fungal biocontrol of Acari. Biocontrol Sci Techn 10:357–384

    Article  Google Scholar 

  • Dantas-Torres F (2010) Biology and ecology of the brown dog tick, Rhipicephalus sanguineus. Parasit Vectors 3:26. doi:10.1186/1756-3305-3-26

    Article  PubMed  PubMed Central  Google Scholar 

  • Dantas-Torres F, Figueredo LA, Brandao-Filho SP (2006) Rhipicephalus sanguineus (Acari: Ixodidae), the brown dog tick, parasitizing humans in Brazil. Rev Soc Bras Med Trop 39:64–67

    Article  PubMed  Google Scholar 

  • David-Henriet A, Pye B, Butt T (1998) Formulation and application of the entomopathogenic fungus Metarhizium anisopliae for the control of crucifer pests in Europe. IOBC WPRS BULLETIN 21:89–90

    Google Scholar 

  • Demma LJ et al (2005) Rocky mountain spotted fever from an unexpected tick vector in Arizona. N Engl J Med 353:587–594. doi:10.1056/NEJMoa050043

    Article  CAS  PubMed  Google Scholar 

  • Drummond RO, Gladney WJ, Whetstone TM, Ernst SE (1971) Laboratory testing of insecticides for control of the winter tick. J Econ Entomol 64:686–688

    Article  CAS  PubMed  Google Scholar 

  • Eremeeva ME et al (2011) Rickettsia rickettsii in Rhipicephalus ticks, Mexicali, Mexico. J Med Entomol 48:418–421

    Article  PubMed  Google Scholar 

  • Estrada-Pena A, Jongejan F (1999) Ticks feeding on humans: a review of records on human-biting Ixodoidea with special reference to pathogen transmission. Exp Appl Acarol 23:685–715

    Article  CAS  PubMed  Google Scholar 

  • Faria MR, Wraight SP (2007) Mycoinsecticides and mycoacaricides: a comprehensive list with worldwide coverage and international classification of formulation types. Biol Control 43:237–256

    Article  Google Scholar 

  • Faria M, Hajek AE, Wraight SP (2009) Imbibitional damage in conidia of the entomopathogenic fungi Beauveria bassiana, Metarhizium acridum, and Metarhizium anisopliae. Biol Control 51:346–354

    Article  Google Scholar 

  • Fernandes EKK, Bittencourt VREP (2008) Entomopathogenic fungi against South American tick species. Exp Appl Acarol 46:71–93. doi:10.1007/s10493-008-9161-y

  • Fernandes EKK, Rangel DE, Moraes AM, Bittencourt VR, Roberts DW (2008) Cold activity of Beauveria and Metarhizium, and thermotolerance of Beauveria. J Invertebr Pathol 98:69–78. doi:10.1016/j.jip.2007.10.011

  • Fernandes EKK, Keyser CA, Chong JP, Rangel DE, Miller MP, Roberts DW (2010) Characterization of Metarhizium species and varieties based on molecular analysis, heat tolerance and cold activity. J Appl Microbiol 108:115–128. doi:10.1111/j.1365-2672.2009.04422.x

  • Fernandes EKK, Angelo IC, Rangel DE, Bahiense TC, Moraes AM, Roberts DW, Bittencourt VR (2011) An intensive search for promising fungal biological control agents of ticks, particularly Rhipicephalus microplus. Vet Parasitol 182:307–318. doi:10.1016/j.vetpar.2011.05.046

  • Fernandes EKK, Bittencourt VREP, Roberts DW (2012) Perspectives on the potential of entomopathogenic fungi in biological control of ticks. Exp Parasitol 130:300–305. doi:10.1016/j.exppara.2011.11.004

    Article  PubMed  Google Scholar 

  • Fujisaki K, Kitaoka S, Morii T (1976) Comparative observations on some bionomics of Japanese ixodid ticks under laboratory cultural conditions. Natl Inst Anim Health Q 16:122–128

    CAS  Google Scholar 

  • Gindin G, Samish M, Zangi G, Mishoutchenko A, Glazer I (2002) The susceptibility of different species and stages of ticks to entomopathogenic fungi. Exp Appl Acarol 28:283–288

    Article  PubMed  Google Scholar 

  • Gloria MA, Daemon E, Faccini JLH, Grisi L (1993) Influência de diferentes temperaturas sobre a biologia da fase não parasitária de Boophilus microplus (Can., 1887) (Acari: Ixodidae). Rev Bras Parasitol Vet 2:85–91

    Google Scholar 

  • Gothe R, Wegerot S, Walden R, Walden A (1989) Epidemiology of Babesia canis and Babesia gibsoni infections in dogs in Germany. Kleintierpraxis 34:309–320

    Google Scholar 

  • Kaaya GP, Hassan S (2000) Entomogenous fungi as promising biopesticides for tick control. Exp Appl Acarol 24:913–926

    Article  Google Scholar 

  • Keyser CA, Fernandes EKK, Rangel DE, Roberts DW (2014) Heat-induced post-stress growth delay: a biological trait of many Metarhizium isolates reducing biocontrol efficacy? J Invertebr Pathol 120:67–73. doi:10.1016/j.jip.2014.05.008

  • Leemon DM, Jonsson NN (2008) Laboratory studies on Australian isolates of Metarhizium anisopliae as a biopesticide for the cattle tick Boophilus microplus. J Invertebr Pathol 97:40–49. doi:10.1016/j.jip.2007.07.006

    Article  CAS  PubMed  Google Scholar 

  • Lobo LS, Rodrigues J, Luz C (2016) Effectiveness of Metarhizium anisopliae formulations against dengue vectors under laboratory and field conditions. Biocontrol Sci Techn 26:386–401

    Article  Google Scholar 

  • Lomer CJ, Bateman RP, Johnson DL, Langewald J, Thomas M (2001) Biological control of locusts and grasshoppers. Annu Rev Entomol 46:667–702. doi:10.1146/annurev.ento.46.1.667

    Article  CAS  PubMed  Google Scholar 

  • Lopes RB, Alves SB, Padulla LF, Perez CA (2007) Efficiency of Beauveria bassiana and Metarhizium anisopliae formulations on Amblyomma cajennense (Fabricius, 1787) nymphae. Rev Bras Parasitol Vet 16:27–31

    PubMed  Google Scholar 

  • Louly CCB, Fonseca IN, de Oliveira VF, Borges LMF (2006) Ocorrência de Rhipicephalus sanguineus em trabalhadores de clínicas veterinárias e canis, no município de Goiânia, GO. Ciênc Anim Bras 7:103–106

    Google Scholar 

  • Luz C, Batagin I (2005) Potential of oil-based formulations of Beauveria bassiana to control Triatoma infestans. Mycopathologia 160:51–62. doi:10.1007/s11046-005-0210-3

    Article  CAS  PubMed  Google Scholar 

  • Luz C, Rodrigues J, Rocha LF (2012) Diatomaceous earth and oil enhance effectiveness of Metarhizium anisopliae against Triatoma infestans. Acta Trop 122:29–35. doi:10.1016/j.actatropica.2011.11.014

    Article  PubMed  Google Scholar 

  • Malsam O, Kilian M, Oerke E-C, Dehne H-W (2002) Oils for increased efficacy of Metarhizium anisopliae to control whiteflies. Biocontrol Sci Techn 12:337–348

    Article  Google Scholar 

  • McClatchie G, Moore D, Bateman R, Prior C (1994) Effects of temperature on the viability of the conidia of Metarhizium flavoviride in oil formulations. Mycol Res 98:749–756

    Article  Google Scholar 

  • Merle C, Sotto A, Barbuat C, Jourdan J (1998) Disease course of Mediterranean spotted fever: remark on 16 cases. 7e Colloque sur le Controle Epidemiologique des Maladies Infectieuses, Paris. Med Maladies Infect 21:400–401

    Article  Google Scholar 

  • Miller RJ, George JE, Guerrero F, Carpenter L, Welch JB (2001) Characterization of acaricide resistance in Rhipicephalus sanguineus (latreille) (Acari: Ixodidae) collected from the Corozal Army Veterinary Quarantine Center, Panama. J Med Entomol 38:298–302

    Article  CAS  PubMed  Google Scholar 

  • Milner R, Huppatz R, Swaris SC (1991) A new method for assessment of germination of Metarhizium conidia. J Invertebr Pathol 57:121–123

    Article  Google Scholar 

  • Moore D, Bridge P, Higgins P, Bateman R, Prior C (1993) Ultra‐violet radiation damage to Metarhizium flavoviride conidia and the protection given by vegetable and mineral oils and chemical sunscreens. Ann Appl Biol 122:605–616

    Article  CAS  Google Scholar 

  • Oliveira DG, Pauli G, Mascarin GM, Delalibera I (2015) A protocol for determination of conidial viability of the fungal entomopathogens Beauveria bassiana and Metarhizium anisopliae from commercial products. J Microbiol Methods 119:44–52. doi:10.1016/j.mimet.2015.09.021

    Article  PubMed  Google Scholar 

  • Polar P, Kairo MT, Moore D, Pegram R, John SA (2005) Comparison of water, oils and emulsifiable adjuvant oils as formulating agents for Metarhizium anisopliae for use in control of Boophilus microplus. Mycopathologia 160:151–157. doi:10.1007/s11046-005-0120-4

    Article  CAS  PubMed  Google Scholar 

  • Rangel DE, Braga GU, Anderson AJ, Roberts DW (2005) Variability in conidial thermotolerance of Metarhizium anisopliae isolates from different geographic origins. J Invertebr Pathol 88:116–125. doi:10.1016/j.jip.2004.11.007

    Article  PubMed  Google Scholar 

  • Rangel DE, Dettenmaier SJ, Fernandes ÉKK, Roberts DW (2010a) Susceptibility of Metarhizium spp. and other entomopathogenic fungi to dodine-based selective media. Biocontrol Sci Techn 20:375–389

  • Rangel DE, Fernandes EKK, Dettenmaier SJ, Roberts DW (2010b) Thermotolerance of germlings and mycelium of the insect-pathogenic fungus Metarhizium spp. and mycelial recovery after heat stress. J Basic Microbiol 50:344–350. doi:10.1002/jobm.200900430

  • Reis RC, Fernandes EKK, Bittencourt VR (2008) Fungal formulations to control Rhipicephalus sanguineus engorged females. Ann N Y Acad Sci 1149:239–241. doi:10.1196/annals.1428.030

  • Rot A, Gindin G, Ment D, Mishoutchenko A, Glazer I, Samish M (2013) On-host control of the brown dog tick Rhipicephalus sanguineus Latreille (Acari: Ixodidae) by Metarhizium brunneum (Hypocreales: Clavicipitaceae). Vet Parasitol 193:229–237. doi:10.1016/j.vetpar.2012.11.020

    Article  CAS  PubMed  Google Scholar 

  • Rozental T, Bustamante MC, Amorim M, Serra-Freire NM, Lemos ER (2002) Evidence of spotted fever group rickettsiae in state of Rio de Janeiro, Brazil. Rev Inst Med Trop Sao Paulo 44:155–158

    Article  PubMed  Google Scholar 

  • Samish M, Ginsberg H, Glazer I (2004) Biological control of ticks. Parasitology 129(Suppl):S389–S403

    Article  PubMed  Google Scholar 

  • Saxena VK, Maheshwari UK (1985) Seasonal incidence of Rhipicephalus sanguineus (Lat) (Acarina) on a wild host Hemiechinus auritus collaris (Gray) (Insectivora). J Commun Dis 17:227–229

    CAS  PubMed  Google Scholar 

  • Smith RD, Sells DM, Stephenson EH, Ristic MR, Huxsoll DL (1976) Development of Ehrlichia canis, causative agent of canine ehrlichiosis, in the tick Rhipicephalus sanguineus and its differentiation from a symbiotic Rickettsia. Am J Vet Res 37:119–126

    CAS  PubMed  Google Scholar 

  • Socolovschi C, Raoult D, Parola P (2009) Influence of temperature on the attachment of Rhipicephalus sanguineus ticks on rabbits. Clin Microbiol Infect 15(Suppl 2):326–327. doi:10.1111/j.1469-0691.2008.02260.x

    Article  PubMed  Google Scholar 

  • Sousa LA et al (2011) Potential synergistic effect of Melia azedarach fruit extract and Beauveria bassiana in the control of Rhipicephalus (Boophilus) microplus (Acari: Ixodidae) in cattle infestations. Vet Parasitol 175:320–324. doi:10.1016/j.vetpar.2010.10.012

    Article  PubMed  Google Scholar 

  • Valdes-Santiago L, Ruiz-Herrera J (2013) Stress and polyamine metabolism in fungi. Front Chem 1:42. doi:10.3389/fchem.2013.00042

    PubMed  Google Scholar 

  • Webster A et al (2015) Integrated control of an acaricide-resistant strain of the cattle tick Rhipicephalus microplus by applying Metarhizium anisopliae associated with cypermethrin and chlorpyriphos under field conditions. Vet Parasitol 207:302–308. doi:10.1016/j.vetpar.2014.11.021

    Article  CAS  PubMed  Google Scholar 

  • Xie XQ, Li F, Ying SH, Feng MG (2012) Additive contributions of two manganese-cored superoxide dismutases (MnSODs) to antioxidation, UV tolerance and virulence of Beauveria bassiana. PLoS One 7:e30298. doi:10.1371/journal.pone.0030298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoshinari NH et al (1997) Perfil da borreliose de Lyme no Brasil. Rev Hosp Clin Fac Med Univ São Paulo 52:111–117

    CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Chad A. Keyser (Utah State University) for comments on early version of the manuscript. We thank Drauzio E. N. Rangel (Universidade Federal de Goiás) and Lígia M. F. Borges (Universidade Federal de Goiás) for a critical review of the manuscript. We are grateful to the Koppert Biological Systems Company for providing the products Metarril® SP Organic and Metarril® WP used in the current study and to R.A. Humber (US Department of Agriculture/Agricultural Research Service, Ithaca, NY, USA) for providing the fungal strain M. robertsii ARSEF 2575. We thank the Center for Zoonosis Control from Goiânia and Aparecida de Goiânia for assistance during the ticks’ collections. We also thank the Coordination for the Improvement of Higher Education Personnel (CAPES) of Brazil for providing MSc scholarship for L.P. Barreto and Ph.D. scholarship for C.C. Bernardo, and the National Council for Scientific and Technological Development (CNPq) of Brazil for providing undergraduate scholarships for F.M. Alves and F.R.S. Paixão. This research was supported by grants from CNPq (477921/2011-6 and 484329/2012-0). We also thank CNPq for the grants PQ 308850/2015-7 for É.K.K. Fernandes and 308189/2013-2 for C. Luz.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Éverton K. K. Fernandes.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alves, F.M., Bernardo, C.C., Paixão, F.R.S. et al. Heat-stressed Metarhizium anisopliae: viability (in vitro) and virulence (in vivo) assessments against the tick Rhipicephalus sanguineus . Parasitol Res 116, 111–121 (2017). https://doi.org/10.1007/s00436-016-5267-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-016-5267-z

Keywords

Navigation